Operationally Convenient and Scalable Asymmetric synthesis of (2S)- and (2R)-α-(Methyl)cysteine Derivatives via Alkylation of Chiral Alanine Schiff Base Ni(II) Complexes


[a]Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan; [b]Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizabal, 20018 San Sebastian, Spain; [c]HAMARI CHEMICALS, USA, Inc., 11494 Sorrento Valley Road, Suite E, San Diego, CA 92121; [d]Department of Nanopharmaceutical Science & Department of Frontier Materials, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan; [e]IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain

This research demonstrates that the methylation of N-benzyl cysteine Schiff bases derived Ni(II) complexes leads to the formation of the corresponding dehydroalanine containing products and cannot be used for preparation of the target α-(methyl)cysteine. In sharp contrast, the alternative strategy involving the thiomethylation of the Ni(II) complexes of alanine Schiff bases, is viable and practically attractive approach affording the desired α-(methyl)cysteine containing derivatives. This work also reveals a significant, and rather unexpected, difference in the stereochemical performance of proline and 3,5-dihydro-4H-dinaph[2,1-c:1′,2′-e]azepine derived chiral ligands, showing a clear superiority of the former in terms of chemical yields and diastereoselectivity of the α-(methyl)cysteine products formation.

![Chemical Structures](image-url)